Tampilkan postingan dengan label STATE. Tampilkan semua postingan
Tampilkan postingan dengan label STATE. Tampilkan semua postingan

Senin, 28 Agustus 2017

SCIENTISTS REVERT HUMAN STEM CELLS TO PRISTINE STATE



Researchers at EMBL-EBI have resolved a long-standing challenge in stem cell biology by successfully 'resetting' human pluripotent stem cells to a fully pristine state, at point of their greatest developmental potential. The study, published in Cell, involved scientists from the UK, Germany and Japan and was led jointly by EMBL-EBI and the University of Cambridge.

Embryonic stem (ES) cells, which originate in early development, are capable of differentiating into any type of cell. Until now, scientists have only been able to revert 'adult' human cells (for example, liver, lung or skin) into pluripotent stem cells with slightly different properties that predispose them to becoming cells of certain types. Authentic ES cells have only been derived from mice and rats.

"Reverting mouse cells to a completely 'blank slate' has become routine, but generating equivalent naïve human cell lines has proven far more challenging," says Dr Paul Bertone, Research Group Leader at EMBL-EBI and a senior author on the study. "Human pluripotent cells resemble a cell type that appears slightly later in mammalian development, after the embryo has implanted in the uterus."
At this point, subtle changes in gene expression begin to influence the cells, which are then considered 'primed' towards a particular lineage. Although pluripotent human cells can be cultured from in vitro fertilised (IVF) embryos, until now there have been no human cells comparable to those obtained from the mouse.

Wiping cell memory
"For years, it was thought that we could be missing the developmental window when naïve human cells could be captured, or that the right growth conditions hadn't been found," Paul explains. "But with the advent of iPS cell technologies, it should have been possible to drive specialised human cells back to an earlier state, regardless of their origin -- if that state existed in primates."
Taking a new approach, the scientists used reprogramming methods to express two different genes, NANOG and KLF2, which reset the cells. They then maintained the cells indefinitely by inhibiting specific biological pathways. The resulting cells are capable of differentiating into any adult cell type, and are genetically normal.

The experimental work was conducted hand-in-hand with computational analysis.
"We needed to understand where these cells lie in the spectrum of the human and mouse pluripotent cells that have already been produced," explains Paul. "We worked with the EMBL Genomics Core Facility to produce comprehensive transcriptional data for all the conditions we explored. We could then compare reset human cells to genuine mouse ES cells, and indeed we found they shared many similarities."

Together with Professor Wolf Reik at the Babraham Institute, the researchers also showed that DNA methylation (biochemical marks that influence gene expression) was erased over much of the genome, indicating that reset cells are not restricted in the cell types they can produce. In this more permissive state, the cells no longer retain the memory of their previous lineages and revert to a blank slate with unrestricted potential to become any adult cell.

Unlocking the potential of stem cell therapies
The research was performed in collaboration with Professor Austin Smith, Director of the Wellcome Trust-Medical Research Council Stem Cell Institute.
"Our findings suggest that it is possible to rewind the clock to achieve true ground-state pluripotency in human cells," said Professor Smith. "These cells may represent the real starting point for formation of tissues in the human embryo. We hope that in time they will allow us to unlock the fundamental biology of early development, which is impossible to study directly in people."

The discovery paves the way for the production of superior patient material for translational medicine. Reset cells mark a significant advance for human stem cell applications, such as drug screening of patient-specific cells, and are expected to provide reliable sources of specialised cell types for regenerative tissue grafts.



Rabu, 14 September 2016

DETECTABLE PRE CANCEROUS STATE IN THE BLOOD IDENTIFIED


Researchers from the Broad Institute of MIT and Harvard, Harvard Medical School, and Harvard-affiliated hospitals have uncovered an easily detectable, "pre-malignant" state in the blood that significantly increases the likelihood that an individual will go on to develop blood cancers such as leukemia, lymphoma, or myelodysplastic syndrome. The discovery, which was made independently by two research teams affiliated with the Broad and partner institutions, opens new avenues for research aimed at early detection and prevention of blood cancer. Findings from both teams appear this week in the New England Journal of Medicine.
Most genetic research on cancer to date has focused on studying the genomes of advanced cancers, to identify the genes that are mutated in various cancer types. These two new studies instead looked at somatic mutations -- mutations that cells acquire over time as they replicate and regenerate within the body -- in DNA samples collected from the blood of individuals not known to have cancer or blood disorders.
Taking two very different approaches, the teams found that a surprising percentage of those sampled had acquired a subset -- some but not all -- of the somatic mutations that are present in blood cancers. These individuals were more than ten times more likely to go on to develop blood cancer in subsequent years than those in whom such mutations were not detected.
The "pre-malignant" state identified by the studies becomes more common with age; it is rare in those under the age of 40, but appears with increasing frequency with each decade of life that passes, ultimately appearing in more than 10% of those over the age of 70. Carriers of the mutations are at an overall 5% risk of developing some form of blood cancer within five years. This "pre-malignant" stage can be detected simply by sequencing DNA from blood.
"People often think about disease in black and white -- that there's 'healthy' and there's 'disease' -- but in reality most disease develops gradually over months or years. These findings give us a window on these early stages in the development of blood cancer," said Steven McCarroll, senior author of one of the papers. McCarroll is an assistant professor of genetics at Harvard Medical School and director of genetics at the Broad's Stanley Center for Psychiatric Research. Benjamin Ebert, an associate member of the Broad and associate professor at Harvard Medical School and Brigham and Women's Hospital, is the senior author of the other paper.
The mutations identified by both studies are thought to originate in blood stem cells, and confer a growth-promoting advantage to the mutated cell and all of its "clones" -- cells that derive from that original stem cell during the normal course of cell division. These cells then reproduce at an accelerated rate until they account for a large fraction of the cells in a person's blood. The researchers believe these early mutations lie in wait for follow-on, "cooperating" mutations that, when they occur in the same cells as the earlier mutations, drive the cells toward cancer. The majority of mutations occurred in just three genes; DNMT3A, TET2, and ASXL1.
"Cancer is the end-stage of the process," said Siddhartha Jaiswal, a Broad associated scientist and clinical fellow from Massachusetts General Hospital who was first author of Ebert's paper. "By the time a cancer has become clinically detectable it has accumulated several mutations that have evolved over many years. What we are primarily detecting here is an early, pre-malignant stage in which the cells have acquired just one initiating mutation."
The teams converged on these findings through very different approaches. Ebert's team had hypothesized that, since blood cancers increase with age, it might be possible to detect early somatic mutations that could be initiating the disease process, and that these mutations also might increase with age. They looked specifically at 160 genes known to be recurrently mutated in blood malignancies, using genetic data derived from approximately 17,000 blood samples originally obtained for studies on the genetics of type 2 diabetes.
They found that somatic mutations in these genes did indeed increase the likelihood of developing cancer, and they saw a clear association between age and the frequency of these mutations. They also found that men were slightly more likely to have mutations than women, and Hispanics were slightly less likely to have mutations than other groups.
Ebert's team also found an association between the presence of this "pre-malignant" state, and risk of overall mortality independent of cancer. Individuals with these mutations had a higher risk of type 2 diabetes, coronary heart disease, and ischemic stroke as well. However, additional research will be needed to determine the nature of these associations.
In the related paper, McCarroll's team discovered the phenomenon while studying a different disease. They, too, were looking at somatic mutations, but they were initially interested in determining whether such mutations contributed to risk for schizophrenia. The team studied roughly 12,000 DNA samples drawn from the blood of patients with schizophrenia and bipolar disorder, as well as healthy controls, searching across the whole genome at all of the protein-coding genes for patterns in somatic mutations.
They found that the somatic mutations were concentrated in a handful of genes; the scientists quickly realized that they were cancer genes. The team then used electronic medical records to follow the patients' subsequent medical histories, finding that the subjects with these acquired mutations had a 13-times elevated risk of blood cancer.
McCarroll's team conducted follow-up analyses on tumor samples from two patients who had progressed from this pre-malignant state to cancer. These genomic analyses revealed that the cancer had indeed developed from the same cells that had harbored the "initiating" mutations years earlier.
"The fact that both teams converged on strikingly similar findings, using very different approaches and looking at DNA from very different sets of patients, has given us great confidence in the results," said Giulio Genovese, a computational biologist at the Broad and first author of McCarroll's paper. "It has been gratifying to have this corroboration of each other's findings."
Jaiswal will be presenting the findings on December 9 at the American Society of Hematology Annual Meeting in San Francisco.
All of the researchers involved emphasized that there is no clinical benefit today for testing for this pre-malignant state; there are no treatments currently available that would address this condition in otherwise healthy people. However, they say the results open the door to entirely new directions for blood cancer research, toward early detection and even prevention.
"The results demonstrate a way to identify high-risk cohorts -- people who are at much higher than average risk of progressing to cancer -- which could be a population for clinical trials of future prevention strategies," McCarroll said. "The abundance of these mutated cells could also serve as a biomarker -- like LDL cholesterol is for cardiovascular disease -- to test the effects of potential prevention therapies in clinical trials."
Ebert agrees:
"A new focus of investigation will now be to develop interventions that might decrease the likelihood that individuals with these mutations will go on to develop overt malignancies, or therapeutic strategies to decrease mortality from other conditions that may be instigated by these mutations," he said.
The researchers also say that the findings show just how important it is to collect and share large datasets of genetic information: both studies relied on DNA samples collected for studies completely unrelated to cancer.
"These two papers are a great example of how unexpected and important discoveries can be made when creative scientists work together and with access to genomic and clinical data," said Broad deputy director David Altshuler, one of Ebert's co-authors. "For example, Steve's team found stronger genetic relationships to cancer than they have yet found for the schizophrenia endpoint that motivated their original study. The pace of discovery can only accelerate if researchers have the ability to apply innovative methods to large datasets."